Methyl Transfer from *trans* **-Dimethylcobalt(III) Complexes to Metal Ion Electrophiles. 1. Reactions of Zinc(I1) and Cadmium(I1) Ions**

JEFFREY H. DIMMIT and JAMES H. WEBER*

Received March 6, 1981

The *trans*-dimethylcobalt(III) complexes $(CH_3)_2Co((1-N_4)$ and $[(CH_3)_2Co(N_4)]ClO_4·H_2O$ rapidly transfer methyl groups to Zn^{2+} and Cd²⁺ (M²⁺) in acetonitrile. (The ligands (1-)N₄ and N₄, which will be collectively designated as chel, are planar, quadridentate, macrocyclic ligands.) 'H NMR studies demonstrate the presence of organozinc or organocadmium intermediates in acetonitrile. The organozinc and organocadmium intermediates vary with the \overline{M}^{2+} :(CH₃)_zCo(chel) reaction stoichiometry, but stable CH₃Co(chel) is always a product. The CH₃Zn⁺ or CH₃Cd⁺ product in the 1:1 reaction slowly evolves methane, but only CH_3Zn^+ does so by pseudo-first-order kinetics. Reactions of excess $(CH_3)_2$ Co(chel) with Zn^{2+} or Cd^{2+} form the transient intermediates $(CH_3)_2Zn$ or $(CH_3)_2Cd$, which rapidly evolve methan

Introduction

Trans-diorganic cobalt(II1) complexes of macrocyclic ligands commonly act as carbanion donors toward electrophilic reagents such as H_3O^+ ,¹ Hg^{2+} ,^{1,2} $C_6H_5Hg^+$,^{1,2} and Ag^+ .³ This research group⁴⁻⁶ described previously the reactions of (C- H_3 ₂Co((1-)N₄) (I, R = CH₃)⁷ with Zn²⁺, Cd²⁺, and Pb²⁺

in 2-propanol. In the presence of excess Zn^{2+} or Cd^{2+} ,⁴ CH_3Zn^+ or CH_3Cd^+ rapidly formed and slowly evolved CH_4 (eq 1). The half-lives for CH₄ evolution are 1.5 h for CH₃Zn⁺ 1

1

the presence of excess Zn^{2+1}

d⁺ rapidly formed and slowly eves for CH₄ evolution are 1.5 h f

(i) + excess $M^{2+} \frac{2\text{-propanol}}{\text{fast}}$

CH₃M⁺ $\frac{2\text{-propanol}}{\text{slow}}$ CH₄

Cd⁺. Analogous reactions⁵ in the C

$$
(CH3)2Co((1-)N4) + excess M2+ 2-propanol CH3Co((1-)N4)+ + CH3M+ (1a)
$$

$$
CH3M+ \xrightarrow[slow]{2-propanol} CH4 \t(1b)
$$

and 53 h for $CH₃Cd⁺$. Analogous reactions⁵ in the presence of excess (CH_3) , $Co((1-N_4)$ form transient $(CH_3)_2M$ species in biphasic reactions $(eq 2)$. $(CH₃)₂Cd$ reacts with 2-propanol

$$
(CH3)2Co((1-)N4) + excess M2+ \xrightarrow{\text{2-propanol}}
$$
\n
$$
CH3Co((1-)N4)+ + CH3M+ (1a)
$$
\n
$$
CH3M+ \xrightarrow{\text{2-propanol}}
$$
\n
$$
CH4
$$
\n(1b)
\nand 53 h for CH₃Cd⁺. Analogous reactions⁵ in the presence
\nof excess (CH₃)₂Co((1-)N₄) form transient (CH₃)₂M species
\nin biphasic reactions (eq 2). (CH₃)₂Cd reacts with 2-propanol
\n(CH₃)₂Co((1-)N₄) + M²⁺ \xrightarrow{\text{2-propanol}}\n
$$
CH3Co((1-)N4) + CH3M+ \xrightarrow{\text{2-propanol}}
$$
\n
$$
CH3Co((1-)N4) + CH3M+ \xrightarrow{\text{2-propanol}}
$$
\n
$$
CH3Co((1-)N4)+ + CH3M+ (2a)
$$
\nto form CH₄ and 1/₄CH₄Cd(₄C₄H₄OL)₄ which solvolvzes

$$
(CH3)2Co((1-)N4) + CH3M+ 2-propanol CH3Co((1-)N4)+ + (CH3)2M (2b)
$$

to form CH₄ and $\frac{1}{4}$ [CH₃Cd(*i*-C₃H₇O)]₄, which solvolyzes to form CH₄ over several days. $(CH_3)_2\overline{Z}$ n evolves 2 mol of CH4 much more rapidly.

The above papers left several unanswered questions. The organozinc and organocadmium intermediates were not directly identified. The presence of protic 2-propanol had a strong effect on reactions such as the formation of $[CH₃Cd-$

- (3)
-
- (5)
- (6) **1977, 7,** 143.
- Ligand abbreviations: $(1-)N_4 = 2,3,9,10$ -tetramethyl-1,4,8,11-tetraa-
zaundeca-1,3,8,10-tetraen-11-ol-1-olato; $N_4 = 2,3,9,10$ -tetramethyl-1,4,8,11 -tetraazacyclotetradeca- 1,3,8,10-tetraene.

 $(i-C_3H_7O)$]₄ from $(CH_3)_2Cd$. The results in this paper extend our past research in several ways including the first reactions of $[(CH_3)_2Co(N_4)]^+$ (II, $R = CH_3$)⁷ with Zn^{2+} and Cd^{2+} . The

major themes are methyl transfer in $CH₃CN$ from neutral $(CH_3)_2Co((1-N_4)$ and cationic $[(CH_3)_2Co(N_4)]^+$ to Zn^{2+} and $Cd²⁺$ during reactions of different stoichiometries and direct identification of alkylzinc and alkylcadmium intermediates by ¹H NMR. As discussed below, the reactions in $CH₃CN$ are quite different from those in 2-propanol. $(CH₃)₂Co(chel)$ is used in the following discussion to represent similar properties of $[(CH_3)_2Co(N_4)]^+$ and $(CH_3)_2Co((1-N_4)$.

Results and Discussion

Spectrophotometric Titrations of $(CH₃)₂Co(chel)$ **with** $Zn²⁺$ **and Cd²⁺.** Spectral titrations of both $(CH₃)₂Co(chel)$ with Zn^{2+} or Cd^{2+} gave similar results. All titrations confirmed the presence of the 1:1 and 1:2 M^{2+} :(CH₃)₂Co(chel) reactions. Attempts to isolate the fast 1:l reaction *(eq* 3a) by titrations of $[(CH_3)_2CO(N_4)]$ and $(CH_3)_2CO((1-1))$
 Results and Discussion
 Spectrophotometric Titrations of $(CH_3)_2$ **

and** Cd^{2+} **.** Spectral titrations of both (CF
 Zn^{2+} or Cd^{2+} gave similar results. All tit

the presence of th and Cd²⁺. Spectral titrations of both $(CH_3)_2^4$

Zn²⁺ or Cd²⁺ gave similar results. All titration

the presence of the 1:1 and 1:2 M²⁺:(CH₃)₂Co(c

Attempts to isolate the fast 1:1 reaction (eq 3a

(CH₃)₂Co

$$
(CH3)2Co(chel) + M2+ \xrightarrow{CR3CA}
$$

CH₃Co(chel) (CH₃CN)⁺ + CH₃M⁺ (3a)
(CU) Co(chel) + CH M⁺ CH₃CN

$$
CH3Co(chel) (CH3CN)+ + (CH3)2M (3b)
$$

yielded end point values between 1.0 and 0.5, which reflect the partial reaction of CH3M+ formed in *eq* 3a with a second mole of the dimethyl complex *(eq* 3b). Slow spectral titrations confirmed the overall 1:2 stoichiometry of the reaction. Plots of absorbance vs. mole ratio $(M^{2+}:(CH_3)_2Co(chel))$ (Figure 1, chel is **N4)** yielded 0.5 mol ratio end points. The 0.5 value is indicative of the 1:2 reaction, in which 1 mol of Cd^{2+} or Zn^{2+} reacts with 2 mol of the dimethyl complex (eq 3). Two important points of the above results are that $CH₃M⁺$ reacts quite rapidly with $(CH_3)_2$ Co(chel) to form $(CH_3)_2M$ (see below) and that during the time of the titrations organozinc or organocadmium compounds did not revert to M^{2+} due to hydrolysis. If M^{2+} had been formed in the latter process, the reaction would be catalytic in metal ion and metal ion: organocobalt ratios far less than 0.5 would occur.

NMR and CH4 Evolution Studies of Reactions of (CH₃)₂Co(chel) with Zn²⁺. ¹H NMR titrations in CH₃CN- d_3 and gas-liquid chromatographic (GLC) experiments provide evidence for the proposed organozinc intermediates. Addition

Espenson, J. H.; Fritz, H. L.; Heckman, R. **A,;** Nicolini, C. *Inorg. Chem.* **1976,** *IS,* 906.

Mestroni, *G.;* Zassinovich, G.; Camus. **A,;** Costa, *G. Transition Met.* (2) Chem. (Weinheim, Ger.) 1975, 1, 32.
Costa, G.; Mestroni, G.; Cocevar, C. J. Chem. Soc. D 1971, 706.
Witman, M. W.; Weber, J. H. *Inorg. Chem.* 1976, 15, 2375.
Witman, M. W.; Weber, J. H. *Inorg. Chem.* 1977, 16, 2512.
Witm

Figure 1. Representative slow spectral titrations of $[(CH₃)₂Co (N_4)$]ClO₄.H₂O with Zn²⁺ (\bullet) and Cd²⁺ (\bullet).

Figure 2. 'H NMR spectra between **+2.0** and **-2.0** ppm: **(A)** [(C- H_3 ₂Co(N₄)]ClO₄·H₂O; (B) immediately after addition of excess Zn^{2+} ; (C) after *6* min; (D) after 10 min; **(E)** after 18 min; (F) after 25 min; (G) after **35** min.

of an equimolar or excess quantity of Zn^{2+} to an anaerobic solution of (CH_3) ₂Co(chel) (Figure 2, chel is N₄) in an NMR tube resulted in the instantaneous disappearance of the resonance due to $[(CH₃)₂Co(N₄)]⁺ (+0.35 ppm)$ and the appearance of two new resonances in addition to one at 1.30 ppm due to the monomethylcobalt complex. The -0.85-ppm resonance decreasing with time is the result of an organozinc species and the $+0.2$ -ppm CH₄ resonance increasing with time is probably due to hydrolysis of an organozinc species.

Methane evolution studies from solutions of Zn^{2+} and $(CH₃)₂Co(chel)$ (mol ratio ≥ 1.0) by GLC show linear plots of $\ln(C_{\infty} - C)$ vs. time (Figure 3) and indicate that CH₄ is the product of a pseudo-first-order process. The half-life for $CH₃Zn⁺$ decomposition in CH₃CN depends on chel. It is 43 min $(k_{obsd} = 1.6 \times 10^{-2} \text{ min}^{-1})$ in the presence of [CH₃Co- $((1-)N₄)(CH₃CN)⁺$ and 28 min (k_{obs}) = 2.5 \times 10⁻² min⁻¹) in the presence of $[CH_3Co(N_4)(CH_3CN)]^{2+}$. The greater stability of CH_3Zn^+ in the presence of $[CH_3Co((1-N_4) (CH₃CN)⁺$ might be due to association of organozinc species with the oxime oxygens of the ligand, which renders it less susceptible to hydrolysis. Our previous work with the $(1-)N₄$ ligand⁴ showed that $CH₃Zn⁺$ has a longer half-life in 2propanol (90 **min)** than in CH3CN **(43 min)** and is presumably stabilized by oxygen donors.

Figure 3. Rate of methane evolution for reactions of $(CH_3)_2$ Co- $((1-)N_4)$ **(0)** and $[(CH_3)_2Co(N_4)]ClO_4·H_2O (A)$ with a 4-fold Zn^{2+} molar excess.

Spectral titrations, CH_4 evolution studies by GLC, and NMR results suggest that the resonance at *-0.85* ppm (Figure 2) is due to CH_3CN -solvated CH_3Zn^+ . Reviews^{8,9} and papers^{10,11} emphasize the complexity of solution organozinc chemistry. $(CH_3)_2Zn$ and polymeric $[CH_3Zn(OCH_3)]_n$ have ¹H NMR CH₃Zn resonances at -0.67 and -0.40 ppm, respectively, in C_6H_6 at 40 °C.¹⁰ Exchange between $(\tilde{CH}_3)_2Zn$ and $[CH_3Zn(OCH_3)]_n$ is slow on the NMR time scale at 0 °C in toluene and −5 °C in pyridine.¹⁰ In similar studies,¹¹ exchange reactions *(eq* 4) in THF are slow on the NMR time

$$
(CH3)2Zn + ZnI2 \Rightarrow 2CH3ZnI \t K \ge 500 \t (4)
$$

scale only at -70 °C. Thus, our tentative assignment of the -0.85 -ppm ¹H NMR resonance to solvated CH₃Zn⁺ must be considered in terms of the possible disproportionation *(eq 5).*

$$
2CH_3Zn^+ \rightleftharpoons (CH_3)_2Zn + Zn^{2+}
$$
 (5)

Equilibrium 5 suggests, however, that Zn^{2+} should catalytically decompose $(CH₃)₂Co(chel)$ because $Zn²⁺$ is regenerated. Spectral titrations show that this does not occur. Instead, the broadness of the -0.85-ppm resonance in Figure 2 could be due to $CH₃Zn⁺$ methyl self-exchange, which would be likely in a ligating solvent such as $CH₃CN$.

¹H NMR spectra of solutions made from Zn^{2+} and excess $(CH₃)₂Co(chel)$ showed no resonance attributable to (C- H_3)₂Zn. A resonance at -0.85 ppm observed immediately after the addition of Zn^{2+} disappeared within 2 min as the CH₄ peak $(0.20$ ppm) appeared. The rapid appearance of CH₄ is confirmed by GLC experiments, because 50% of the theoretical CH4 appears in about 2 min and 100% within 20 min. **In** contrast to the 1:1 reaction $CH₃Zn⁺$ is not a stable intermediate in the reactions containing excess $(CH_3)_2Co(chel)$. We postulate that $(CH_3)_2Zn$ formed (eq 3b) is instantaneously decomposed by H_2O releasing 50% of the CH₄ and forming CH₃Zn(OH) (eq 6), which rapidly releases the remaining 50%

(CH₃)₂Zn + H₂O → CH₃Zn(OH) + CH₄ (6)

$$
(\mathrm{CH}_3)_2 \mathrm{Zn} + \mathrm{H}_2 \mathrm{O} \rightarrow \mathrm{CH}_3 \mathrm{Zn}(\mathrm{OH}) + \mathrm{CH}_4 \qquad (6)
$$

of the CH₄ by a second reaction with H₂O. This explanation is reasonable because reactions of dialkylzinc complexes with alcohols and H_2O are well-known. For example $(C_2H_5)_2Zn$ reacts with H_2O in diethyl ether at 0 °C in a 1:1 stoichiometry, and the presumed $(C_2H_5)Zn(OH)$ has a 6-min half-life at 30 $^{\circ}$ C.¹² The same paper describes the reactions of alcohols with $(C_2H_5)_2Zn$ to form $(C_2H_5)Zn(i-C_3H_7O)$ in hexane and Zn-

-
- (12) Herold, R. J.; Aggarwal, **S.** L.; Neff, V. Can. *J. Chem.* **1963,** *41,* 1368.

⁽⁸⁾ Ham, N. *S.;* Mole, T. *Prog. Nucl. Magn. Reson. Spectrosc.* **1969,** *4,*

^{91.}

⁽⁹⁾ Oliver, J. P. Adv. Organomet. Chem. 1970, 8, 167.
(10) Jeffery, E. A.; Mole, T. Aust. J. Chem. 1968, 21, 1187.
(11) Evans, D. F.; Fazakerley, G. V. J. Chem. Soc. A 1971, 182.

 $(OR)_2$ (R = primary, secondary, or tertiary alkyl) in ether. Thus, the literature agrees with our postulate of the unstable $CH₃Zn(OH)$ intermediate, but we cannot rule out the decomposition of $CH₃Zn⁺$ via a reaction with a species such as $CH₃Zn(OH)$.

NMR and CH, **Evolution Studies of Reactions of** $(CH₃)₂Co(chel)$ with $Cd²⁺$. Addition of equimolar or excess Cd^{2+} to an anaerobic solution of $(CH_3)_2Co(chel)$ in an NMR tube resulted in the instantaneous disappearance of the 'H NMR CH₃Co signal due to $(CH_3)_2$ Co(chel) and appearance of the monomethylcobalt complex signal and a broad signal without satellites (see below) at -0.50 ppm. Attempts to obtain the half-life of CH₄ evolution as for $(CH_3)Zn^+$ (Figure 3) failed because $\ln (C_{\infty} - C)$ vs. time plots were not linear.

Reviews^{8,9} and papers^{10,13-15} emphasize exchange reactions of organocadmium species. Such exchange reactions are easy to detect because ¹H satellites due to ¹¹¹Cd and ¹¹³Cd splittings are broadened and finally merged with the major band of Cd isotopes with spin $= 0$. Thus, the absence of satellites near the -0.50-ppm resonance demonstrates the presence of exchange reactions. The exchange could be either self-exchange or a Schlenk-type equilibrium (eq **7).** Organocadmium ex-

$$
(CH3)2Cd2+ + Cd2+ \rightleftharpoons 2CH3Cd+ \tag{7}
$$

change reactions can be very fast. $(CH₃)₂Cd$ in THF lacks satellites even at -10 °C; added CH₃Cd(OCH₃) or CdI₂ catalyzes the exchange, and $(CH_3)_2Cd$ -CdBr₂ mixtures show broadened satellites at -110° C.¹³ Generally, polar solvents decrease the energy of activation of $(CH₃)₂Cd$ exchange reactions.¹⁴ The absence of satellites of our -0.50 -ppm resonance and the literature cited above strongly suggest that the $CH₃Cd⁺$ species is in equilibrium with at least one other organocadmium species. It is not surprising that we cannot describe CH4 evolution with the simple rate law described above for Zn^{2+} reactions or our previous Cd^{2+} reactions in 2-propanol.⁴

¹H NMR spectra of solutions prepared from Cd^{2+} and at least a 2-fold molar excess of $(CH₃)₂Co(chel)$ showed the usual rapid disappearance of the $(CH₃)₂Co$ resonance, the formation of the monomethyl analogue, and an organocadmium band at -0.06 ppm. The absence of CH4 after **2** min in contrast to the analogous Zn^{2+} reaction is explained by the rates of CH_4 evolution in M^{2+} - $(CH_3)_2Co((1-)N_4)$ reactions of 1:2 stoichiometry. The time for 50% of theoretical CH_4 evolution is about 50 min for Cd^{2+} compared to about 2 min for Zn^{2+} .

The absence of satellites in this solution of 1:2 Cd^{2+} : $(CH₃), Co(chel) stoichiometry demonstrates the rapid ex$ change reactions expected for $(CH_3)_2$ Cd in polar solvents^{13,14} or $(CH_3)_2$ Cd exchange catalyzed by CdBr₂, CdI₂, or [(C- $H_3)Cd(OCH_3)]_4$.¹³ These results agree with the observation that rates of exchange reactions are controlled by bridge formation.⁹ Our experiments contain no alkoxide ion or coordinating anion, but CH,Cd(OH) formed via eq 6 could catalyze the exchange reaction. The chemical shift is more negative when the Cd^{2+} :(CH₃)₂Co(chel) ratio is smaller because the equilibrium of eq 7 contains a higher fraction of $(CH₃)₂$ Cd. It is generally known that proton resonances of $(CH_3)_2M$ (M = Cd, Zn) species are 0.2-0.5 ppm further upfield^{8,10,13} than those of $CH₃MX$ (X = halide, alkoxide). To our knowledge species such as solvated $CH₃Zn⁺$ or $CH₃Cd⁺$ have not been subjected to NMR studies, but in CD₃OD, CH₃Hg⁺¹⁶ at +1.0 ppm is far downfield of (C-

- (1 3) Bremser, W.; Winokur, M.; Roberts, J. D. *J.* Am. *Chem. Soc.* **1970.92,** 1080.
- (14) Soulati, J.; Henold, K. L.; Oliver, J. P. *J.* Am. *Chem. SOC.* **1971, 93,** 5694.
- (15) Kennedy, J. D.; McFarlane, W. J. *Chem. SOC., Perkin Trans.* **2 1977,** 1187.
- (16) Canty, A. J.; Marker, A. *Inorg. Chem.* **1976,** *IS,* 425.

 H_3)₂Hg⁸ at +0.2 ppm. Thus, increased $(CH_3)_2Cd$ in a $(CH₃)₂Cd-CH₃Cd⁺ mixture will result in the observed higher$ field proton resonance at lower Cd^{2+} :(CH₃)₂Co(chel).

Experimental Section

General Information. Reactions between the dimethyl complexes and Zn^{2+} and Cd^{2+} were performed in the dark under an atmosphere of purified nitrogen. Acetonitrile was purified by the method of Coetzee.¹⁷ All other solvents were purified by standard methods.¹⁸ $Zn(CIO_4)_2.6H_2O$ and $Cd(CIO_4)_2.6H_2O$ were obtained from G. F. Smith and were recrystallized from deionized water. The use of hydrated salts means that the solutions contain low water concentrations. The Zn^{2+} and Cd^{2+} solutions were standardized by the method of Flaschka.¹⁹

Physical Measurements. Elemental analyses (C, H, N) were performed on a Perkin-Elmer Model 240B elemental analyzer or an F and M Model 185 CHN analyzer. IH NMR spectra were recorded on a Varian EM360 NMR spectrometer. Electronic spectra in the 200-700-nm range were recorded on either a Cary Model 14 or 219 recording spectrophotometer. A Varian Aerograph series 1860- 1 chromatograph equipped with a flame ionization detector and a 6 ft \times ¹/₈ in. OV-17 (3% on Chromsorb-W, 80-100 mesh) column maintained at 60 °C or a 6 ft \times ¹/₈ Porapak-Q (80–100 mesh) column maintained at 115 °C was used to determine volatile reaction products. With a 25 mL/min flow rate the following retention times were observed: CH4, 66 **s** (OV-17), 30 **s** (Porapak-Q); C2H6, 54 **s** (Porapak-Q); CH,CN, 90 **s** (OV-17), 21.5 min (Porapak-Q).

Synthesis of Dimethyl Complexes. $(CH₃)₂Co((1-)N₄)$ was prepared from $[Co((1-)N_4)(H_2O)_2](NO_3)_2$ by the method of Witman and Weber.⁶ Anal. Calcd for $\tilde{C}_{12}H_{25}N_4O_2C_0$: C, 47.57; H, 7.62; N, 17.07. Found: C, 47.53; H, 7.79; N, 17.16. UV-vis spectrum (CH₃CN): 236 nm **(e** 19 600), 276 (1 3 000), 405 (7220). 'H NMR spectrum (CH,CN-d,): *6* 0.07 (s), 2.35 (s), 2.36 (s), 2.4-2.1 (m).

Initial attempts to prepare the intermediate complexes $[Co(N_4)X_2]^+$ $(X = CI^-$, Br⁻) by literature procedures²⁰ resulted in either very small yields (about $1-2\%$) or no product at all. A newer method²¹ led to $[Co(N_4)Br_2]Br$ in 22% yield. Conversion to the ClO₄⁻ salt²⁰ by removal of Br^{-6} resulted in $[Co(N_4)(H_2O)_2] (ClO_4)_3.2H_2O$ in high yield. $[(CH₃)₂Co(N₄)]ClO₄·H₂O$ was prepared from $[Co(N₄)(H₂O)₂]$ - $(CIO₄)₃$ -2H₂O by the procedure of Witman and Weber⁶ for the preparation of $(CH_3)_2Co((1-)N_4)$. Anal. Calcd for $C_{16}H_{32}N_4O_5ClCo$: C, 42.26; H, 7.04; N, 12.33. Found: C, 42.50; H, 6.97; N, 12.50. UV-vis spectrum (CH,CN): 252 nm **(c** 19400), 290 (sh), 442 (8630). ¹H NMR spectrum (CH₃CN-d₃): δ 0.35 (s), 2.40 (s), 2.1-2.4 (m).

Caution! Perchlorate complexes are potentially explosive and must be handled cautiously.

Spectrophotometric Titrations. Titrations were performed anaerobically in 1-cm quartz cells. Typically, 10^{-4} M solutions of $(CH₃)$,Co(chel) were titrated with standard solutions (0.2 M) of Zn^{2+} or Cd^{2+} by following the absorbance decrease due to the loss of $[(CH₃)₂Co(N₄)]ClO₄·H₂O at 442 nm or (CH₃)₂Co((1–)N₄) at 405$ nm. The overall biphasic reactions were titrated by injecting small volumes of the M^{2+} titrant from a 1- μ L syringe directly into a cuvette that contained a known amount of the $(CH₃)₂Co(chel)$. Attempts to titrate the fast first reaction of the overall biphasic reaction were done by using the same titration procedure just described except that the M2+ titrant additions were made as rapidly as possible (10 **s** apart).

IH NMR Titrations. The titrations were performed in anaerobic 5-mm NMR tubes. Typically, a 0.50-mL aliquot of a 0.030 M solution of $(CH_3)_2$ Co(chel) in CH₃CN- d_3 was titrated with a standard $CH₃CN-d₃$ solution of Zn^{2+} or Cd^{2+} . The titration progress was monitored by observing 'H NMR spectral changes.

Methane Evolution. Anaerobic solutions of $(CH_3)_2Co(chel)$ (4 \times 10^{-3} M) were made up in 50-mL hypo vials that were sealed with serum caps. The reactions were initiated by the addition of the appropriate volume of a standardized Zn^{2+} or Cd^{2+} solution from a

-
- (17) Coetzee, J. F. *Pure* Appl. *Chem.* **1966, 13,** 429. (18) Gordon, A. J.; Ford, R. **A.** "The Chemist's Companion. **A** Handbook of Practical Data, Techniques, and References"; Wiley: New York, 1972.
- (19) Flaschka, H. **A.** 'EDTA Titrations, An Introduction to Theory and
- Practice"; Pergamon Press: Elmsford, New York, 1964; pp 79-86. (20) Jackels, S. C.; Farmery, K.; Barefield, E. K.; Rose, N. J.; Busch, D. H. *Inorg. Chem.* **1972,** *11,* 2893.
- (21) Tait, A. M.; Busch, D. H. *Inorg. Synth.* **1978,** *18,* 25.

syringe. The liberated CH_4 was sampled with a gastight syringe and detected by GLC. Infinity values were determined after acid hydrolysis of the reaction mixture.

Acknowledgment. We thank the National Science Foun-

dation for partial funding for the Cary 219 spectrophotometer through Grant CHE 79-08399.

Registry No. $(CH_3)_2Co((1-N_4), 33569-60-7; [(CH_3)_2Co(N_4)]-$ C104, 773 10-45-3; Cd, 7440-43-9; Zn, 7440-66-6.

Contribution from the Department of Chemistry, Seton Hall University, South Orange, New Jersey 07079

Kinetics and Mechanism of the Reduction of Hexacyanoferrate(II1) by (Ethylenediamine te traace ta to) hy droxoco baltate (II)

BARBARA T. REAGOR and DANIEL H. HUCHITAL*1

Received May *14, 1981*

The formation and disappearance of the binuclear cyanide-bridged complex between $Fe(CN)_{6}^{3-}$ and CoEDTA²⁻ were investigated between pH 6.0 and 13.44. No change in the rate is observed until pH \sim 12, after which a drastic rise in the observed first-order rate constant is seen with increasing pH. Concurrently, the intensity of the deep purple binuclear complex decreases. These observations are attributed to the formation of the hydroxo complex CoEDTA(OH) $3-$, which reduces $Fe(CN)_{6}^{3-}$ via an outer-sphere reaction without first reacting to form a binuclear (Fe^{II}–CN–Co^{III}) species. The failure of this species to form is taken as strong evidence of the outer-sphere mechanism in these reactions.

Introduction

The reduction of hexacyanoferrate(II1) and substituted pentacyanoiron(II1) complexes by (ethylenediaminetetraacetato)cobaltate(II) and related cobalt(I1) chelates has been studied between pH 5 and 10 by several workers.²⁻¹⁰ In each case the same pattern emerges: a rapid formation of a cyanebridged binuclear complex followed by a slower formation of the final products, the mononuclear species $Fe^{II}(CN)$ ₅X^{π -} and Co^{III}(chelate). The mechanism initially proposed^{2,4,5,7} for these reactions involved the formation and subsequent dissociation of the cyano-bridged Fe^{II}-CN-Co^{III} entity as represented by reactions 1 and 2, with use of $Fe(CN)_{6}^{3-}$ and CoEDTA²⁻ as examples.

$$
CoEDTA^{2-} + Fe(CN)_{6}^{3-} \stackrel{K_{1}}{\xrightarrow{\hspace{0.5cm}}} (EDTA)Co^{III} - NC - Fe^{II}(CN)_{5}^{5-} (1)
$$

$$
(EDTA)CoIII-NC-FeII(CN)55- \frac{k_2}{k_{-2}}
$$

CoEDTA⁻ + Fe(CN)₆⁴⁻ (2)

An alternate mechanism, initially proposed by Haim and co-workers⁶ and later substantiated by this research group, $8,9$ attributes the slow formation of mononuclear products to an outer-sphere process. In this mechanism the binuclear complex is a "dead end" to product formation. Instead, reaction 3 is

proposed to account for the product formation.
\nCoEDTA²⁻ + Fe(CN)₆³⁻
$$
\frac{k_3}{k_{-3}}
$$
 CoEDTA⁻ + Fe(CN)₆⁴⁻ (3)

Recently,¹⁰ evidence has been sought for the formation of a binuclear complex utilizing another bridging ligand, **4,4'** bipyridine. It was hoped that this species, which has served as an effective bridging ligand in earlier systems,^{11,12} would

(2) Adamson, A. W.; Gonick, E. *Inorg. Chem.* 1963, 2, 129.
(3) Huchital, D. H.; Wilkins, R. G. *Inorg. Chem.* 1967, 6, 1022.
(4) Huchital, D. H.; Hodges, R. J. *Inorg. Chem.* 1973, 12, 998.
(5) Huchital, D. H.; Maenpa, F.

act as a viable alternate to cyanide bridging, but this was not the case. In an effort to find such systems, we have continued our investigations using pentadentate cobalt(I1) chelate complexes. Early work with **(N-benzylethylenediaminetri**acetato)cobaltate(II) and the parent iron complex $Fe(CN)_{6}^{3-}$ (performed as a model for cyanide-bridge formation) showed some interesting behavior above pH 10. The rate of production of products increased with pH, yet the apparent degree of formation of the binuclear complex decreased in this pH range. Similar results were obtained with (N-(hydroxyethy1) **ethylenediaminetriacetato)cobaltate(II).** To understand this effect more fully, the parent cobalt(II) complex, $CoEDTA^{2-}$, was investigated above pH 10. The results of this investigation are reported here.

Experimental Section

Materials. Na3Fe(CN), was purchased from Pfaltz & Bauer. Hydrated reagent NaC104 was purchased from G. F. Smith, and the disodium salt of **ethylenediaminetetraacetic** acid was purchased from Matheson Coleman and Bell. Cobalt(I1) nitrate and a 50% standard NaOH solution were Fisher reagent-grade chemicals. Steam-distilled water was passed through a Barnstead Ultrapure mixed-bed ion exchanger and filtered before use.

Solution Preparation. Stock solutions of all chemicals were prepared by weight except for the $Co(NO₃)₂$ solutions, which were standardized by titration with standard EDTA and xylenol orange indicator.¹³ Co^{II}EDTA solutions were prepared just prior to each run by using 10% excess NazH2EDTA. Hexacyanoferrate(II1) solutions were analyzed spectrophotometrically by using a molar absorptivity of 1023 M^{-1} cm⁻¹ at 420 nm. Sample solutions were prepared so that kinetic runs were made at ionic strength 0.26 M and 25 °C. All pH adjustments were made with use of solutions prepared from carbonate-free standard 50% NaOH. No buffer was added. All pH measurements were made with a Fisher Accumet Model 520 pH meter equipped with a glass microprobe electrode. The electrode was placed in solutions for 30 **s** prior to measurement. Subsequent cleanings and standardization against pH 10 buffers were conducted between measurements.

Spectrophotometric and Kinetic Measurements. Kinetic measurements were obtained with a Cary 15 spectrometer equipped with a water-jacketed cell holder. Constant temperature in the cell compartment was maintained at 25 ± 0.01 °C by using a Lo-temptrol precision thermostatic bath. All solutions and the 2-cm absorbance cell were equilibrated to 25 °C before measurements were made. The

⁽¹⁾ To whom correspondence should be addressed.

⁽⁸⁾ Huchital, D. H.; Lepore, J. *Inorg. Chem.* **1978, 17, 1134.**

⁽⁹⁾ Huchital, D. H.; Lepore, J. *J. Inorg. Nucl. Chem.* **1978,** *40,* **2073. (10) Phillips, J.; Haim, A.** *Inorg. Chem.* **1980, 19, 1616.**

⁽¹¹⁾ Gaswick, D.; Haim, A. *J. Am. Chem. SOC.* **1974, 96, 7845.**

⁽¹²⁾ Fischer, H.; Tom, G. M.; Taube, H. J. Am. Chem. Soc. 1976, 98, 5512.
(13) Vogel, A. I. "A Textbook of Quantitative Inorganic Analysis", 3rd, ed.;
Wiley: New York, 1961; p 443.